Die ferne Seite der Milchstraße

Neues aus der Forschung

Meldung vom 12.10.2017

Astronomen vom Max-Planck-Institut für Radioastronomie in Bonn und vom amerikanischen Harvard-Smithsonian Center for Astrophysics haben mit dem „Very Long Baseline Array“ die Entfernung zu einem Sternentstehungsgebiet vermessen, das sich jenseits des Galaktischen Zentrums auf der anderen Seite der Milchstraße befindet. Ihr Messresultat bringt sie tief in den „Terra Incognita“-Bereich unserer Galaxis und verdoppelt den bisherigen Rekordwert für eine Entfernungsbestimmung innerhalb der Milchstraße.


171119-1748_medium.jpg
 
Künstlerische Darstellung der Milchstraße mit der Position der Sonne und dem Sternentstehungsgebiet (Maserquelle G007.47+00.05) auf der entgegen gerichteten Seite im Scutum-Centaurus-Spiralarm.
Bild: Bill Saxton, NRAO/AUI/NSF; Robert Hurt, NASA
Alberto Sanna, Mark J. Reid, Thomas M. Dame, Karl M. Menten, Andreas Brunthaler. 2017. Mapping Spiral Structure on the far side of the Milky Way Science
DOI: 10.1126/science.aan5452

Entfernungsbestimmungen sind entscheidend für das Verständnis des strukturellen Aufbaus der Milchstraße. Das meiste Material in unserer Galaxis, die prinzipiell aus Sternen, Gas und Staub aufgebaut ist, befindet sich in einer flachen Scheibe, in die auch unser Sonnensystem eingebettet ist. Da wir unsere Milchstraße nicht von außerhalb betrachten können, kann ihre Struktur einschließlich des Verlaufs ihrer Spiralarme nur durch die Bestimmung des Abstands zu einzelnen Objekten an unterschiedlichen Positionen der Galaxis vermessen werden.

Die Astronomen verwenden dafür die Messtechnik der trigonometrischen Parallaxe, die Friedrich Wilhelm Bessel im Jahre 1838 erstmalig verwendet hat, um die Entfernung zu dem Stern 61 Cygni im Sternbild Schwan zu bestimmen. Diese Technik vermisst die scheinbare Verschiebung der Position eines astronomischen Objektes am Himmel bei der Betrachtung von entgegengesetzten Positionen der Erdbahn bei ihrem Lauf um die Sonne. Der Effekt kann dadurch veranschaulicht werden, dass man einen Finger unmittelbar vor die Nase hält und abwechselnd jeweils ein Auge schließt – der Finger scheint dabei von einer Position zur anderen zu hüpfen.

Die Messung des Winkels der scheinbaren Positionsverschiebung eines Himmelsobjekts ermöglicht den Forschern die Anwendung einfacher Trigonometrie, um daraus direkt die Entfernung zu diesem Objekt abzuleiten. Je kleiner der gemessene Winkel, desto größer die Entfernung. Im Rahmen des “Bar and Spiral Structure Legacy” (BeSSeL) Projekts ist es nun möglich, Parallaxen in der Milchstraße mit dem „Very Long Baseline Array“ (VLBA), einem kontinentalen Radioteleskop-Netzwerk mit zehn über Nordamerika, Hawaii und die Karibik verteilten Einzelteleskopen 1000 mal genauer zu bestimmen als es für Bessel möglich war.

Im vorliegenden Fall entspricht der gemessene Wert dem Winkeldurchmesser eines Fußballs auf der Oberfläche des Mondes.

“Mit dem VLBA können wir nun die gesamte Ausdehnung unserer Milchstraße genau vermessen”, sagt Alberto Sanna vom Bonner Max-Planck-Institut für Radioastronomie (MPIfR).

Die neuen VLBA-Beobachtungen aus den Jahren 2014 und 2015 ergeben eine Entfernung von mehr als 66.000 Lichtjahren für das Sternentstehungsgebiet G007.47+00.05 auf der entgegengesetzten Seite der Milchstraße, weit jenseits des Galaktischen Zentrums in einer Entfernung von 27.000 Lichtjahren. Der vorherige Rekord für eine Parallaxenmessung in der Milchstraße lag bei rund 36.000 Lichtjahren.

“Die meisten Sterne und das meiste Gas in unserer Milchstraße liegen innerhalb der mit der neuen Messung erzielten Reichweite. Mit dem VLBA haben wir jetzt das Potential, eine genügende Anzahl von Entfernungen zu abzuleiten, um damit Form und Verlauf der Spiralarme in unserer Galaxis zu bestimmen“, erklärt Alberto Sanna.

Mit den hier beschriebenen VLBA-Beobachtungen wurde die Entfernung zu einem Sternentstehungsgebiet in unserer Milchstraße bestimmt. Diese Gebiete umfassen Bereiche, in denen Wasser- und Methanolmoleküle als natürliche Verstärker von Radiosignalen wirken – diese sogenannten Maser sind in Radiowellen das Äquivalent zu Lasern im Bereich des sichtbaren Lichts. Der Masereffekt führt zu starken und leicht messbaren Signalen für die Beobachtung mit Radioteleskopen.

In der Milchstraße gibt es Hunderte solcher Sternentstehungsgebiete mit darin enthaltenen Maserquellen. „Wir haben insgesamt eine Vielzahl von Meilensteinen für unser Vermessungsprojekt. Aber diese hier ist etwas ganz spezielles: ein Blick quer durch die Milchstraße entlang ihres Zentrums bis weit hinaus auf die andere Seite“, sagt Karl Menten, ebenfalls vom MPIfR.

Das Ziel der Astronomen ist aufzuzeigen wie unsere Milchstraße genau aussehen würde, wenn man sie und von oben aus etwa einer Million Lichtjahre Entfernung auf die gewaltige Spirale blicken könnte, statt sie aus der Scheibe heraus untersuchen zu müssen. Diese Aufgabe wird noch eine Reihe von weiteren Beobachtungen erfordern sowie eine Menge mühevoller Arbeit in der Datenanalyse. Aber, so sagen die Wissenschaftler: die Werkzeuge für das Projekt sind vorhanden. Wie lange wird es noch dauern?

“Innerhalb der nächsten zehn Jahre sollten wir ein ziemlich komplettes Bild erhalten“, schließt Mark Reid vom Harvard-Smithsonian Center for Astrophysics.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung