Die Umgebung macht das Molekül zum Schalter

Neues aus der Forschung

Meldung vom 14.11.2018

Erstmals haben Physiker der Universität Würzburg ein organisches Molekül so positioniert, dass dieses zwei unterschiedliche Zustände annehmen kann. Damit eignet es sich möglicherweise zum Einsatz in der molekularen Spintronik.


181118-1422_medium.jpg
 
Ein flaches Molekül auf einer Oberfläche aus Bismut- (blau) und Silberatomen (grau). Das zentrale Manganatom (rot) kann seine Position verändern.
Jens Kügel, Michael Karolak, Andreas Krönlein, David Serrate, Matthias Bode & Giorgio Sangiovanni
Reversible magnetic switching of high-spin molecules on a giant Rashba surface
npj Quantum Materials
DOI: https://doi.org/10.1038/s41535-018-0126-z


Es sieht aus wie ein Kreuz mit vier exakt gleich langen Armen, in deren Schnittpunkt in der Mitte ein zentrales Atom sitzt. Sämtliche Bausteine sind in einer Ebene angeordnet, sodass das Molekül absolut plan ist – zumindest im Normalzustand. Jetzt ist es Physikern der Universität Würzburg gelungen, dieses Molekül mithilfe einer speziellen Auflage und eines elektrischen Felds so zu manipulieren, dass es zwei unterschiedliche Zustände dauerhaft annehmen kann. Damit könnte es sich als eine Art „molekularer Schalter“ für die Spintronik anbieten – einer zukunftsträchtigen Form der Datenverarbeitung, die auf dem Spin von Elektronen basiert.

Der Molekülschalter ist das Produkt einer Zusammenarbeit von Vertretern der experimentellen und der theoretischen Physik an der Julius-Maximilians-Universität (JMU): Dr. Jens Kügel, Postdoc am Lehrstuhl für Experimentelle Physik II, konzipierte und führte die Experimente durch. Giorgio Sangiovanni, Professor für Theoretische Physik am Institut für Theoretische Physik und Astrophysik, kümmerte sich um deren Interpretation. Ihre Forschungsergebnisse hat das Team jetzt in der aktuellen Ausgabe der Fachzeitschrift npj Quantum Materials veröffentlicht.

Brückenbau mit einem Farbstoffmolekül

„Wir haben mit einem Mangan-Phthalocyanin-Molekül gearbeitet, einem Farbstoff, der normalerweise nicht schaltbar ist“, beschreibt Sangiovanni die Vorgehensweise der Physiker. Um daraus dennoch einen molekularen Schalter zu konstruieren, musste Jens Kügel einen Trick anwenden. Dazu brachte er das Molekül auf einer sehr speziellen metallischen Oberfläche auf, die aus Silber- und Bismutatomen aufgebaut war.

Weil Bismutatome deutlich größer sind als Silberatome, ziehen sie sich dank ihrer regelmäßigen Anordnung wie niedrige Mauern über die Metalloberfläche. Unregelmäßigkeiten in dieser Struktur führen zu einem größeren Abstand zwischen zwei Bismutbereichen, die man sich als ein ausgetrocknetes Flussbett vorstellen kann. Das Mangan-Phthalocyanin-Molekül bildet dann – um im Bild zu bleiben – eine Brücke über dieses Flussbett.

Schaltung per elektrischem Feld

Seine Schaltbarkeit erhält das Molekül durch einen technischen Eingriff von Jens Kügel. Näherte er sich mit einer extrem feinen Spitze, von der ein elektrisches Feld ausging, dem Manganatom im Zentrum des Moleküls, veränderte dies seine Lage – konkret wanderte es ein stückweit nach unten in Richtung der metallischen Oberfläche – und verharrte dort außerhalb der Molekülebene dauerhaft. „Auf diese Weise nahm das Molekül zwei stabile Zustände ein, zwischen denen wir hin- und herschalten konnten“, sagt der Physiker.

Physikalisch gesehen bildet das Molekül durch die Lageveränderung seines zentralen Atoms ein großes magnetisches Moment aus. Aufgrund spezieller quantenphysikalischer Phänomene wirkt sich diese Lageveränderung auf das gesamte Molekül aus, was sich nach außen durch stark unterschiedliche magnetische Eigenschaften bemerkbar macht. In der Fachsprache der Physik wird dies als Kondo-Effekt bezeichnet.

Ein neues Konzept zum Bau molekularer Schalter

Normalerweise werden molekulare Schalter so synthetisiert, dass sie von sich aus in mehreren Zuständen stabil sind. „Wir haben jetzt gezeigt, dass man auch in nichtschaltbaren Molekülen diese Funktionalität erzeugen kann, indem man die Umgebung des Moleküls gezielt verändert“, schilderten Kügel und Sangiovanni das zentrale Ergebnis der jetzt veröffentlichten Arbeit. Die Physiker haben damit ein neues Konzept entwickelt, molekulare Schalter zu bauen. Dies eröffnet aus ihrer Sicht in Zukunft neue Möglichkeiten im Design molekularer Elektronik.

Erfolgreiche Kooperation im Sonderforschungsbereich

Die erfolgreiche Zusammenarbeit von theoretischen und experimentellen Physikern an der Universität Würzburg basiert auch auf dem hier angesiedelten Sonderforschungsbereich „Topologische und korrelierte Elektronik in Ober- und Grenzflächen“ – kurz: ToCoTronics. In dessen Fokus stehen spezielle physikalische Phänomene – elektronische Korrelationen und topologische Physik und vor allem ihr Wechselspiel, die großes Anwendungspotential für neuartige und zukunftsweisende Technologien besitzen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung