Chemische Reaktionen im Licht ultrakurzer Röntgenpulse aus Freie-Elektronen-Lasern

Neues aus der Forschung

Meldung vom 28.06.2018

Ultrakurze, hochintensive Röntgenblitze öffnen das Tor zu den Grundlagen chemischer Reaktionen. Freie-Elektronen-Laser erzeugen solche Pulse, doch es gibt ein Problem: Die Pulse variieren in Länge und Energie. Ein internationales Forschungsteam präsentiert nun eine Lösung: Ein Ring aus 16 Detektoren und ein zirkular polarisierter Laserstrahl ermöglichen es, beide Faktoren mit Attosekunden-Genauigkeit zu bestimmen.


180702-2121_medium.jpg
 
Ultrakurze Röntgenpulse (rosa) ionisieren Neongas im Zentrum des Rings. Ein Infrarotlaser (orange) lenkt die Elektronen (blau) auf ihrem Weg zu den Detektoren ab.
N. Hartmann, G. Hartmann, R. Heider, M. S. Wagner, M. Ilchen, J. Buck, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P. Moeller, M. Planas, J. Robinson, A. K. Kazansky, N. M. Kabachnik, J. Viefhaus, T. Feurer, R. Kienberger, R. N. Coffee and W. Helml
Attosecond time–energy structure of X-ray free electron laser pulses
Nature Photonics volume 12, pages 215–220 (2018)
DOI: 10.1038/s41566-018-0107-6


Freie-Elektronen-Laser (FEL) erzeugen extrem kurze und intensive Röntgenblitze. Mit diesen können Forscher Strukturen vom Durchmesser eines Wasserstoffatoms erkennen. Biomoleküle lassen sich so in höchster Auflösung abbilden und völlig neue Einblicke in den Nanokosmos der Natur gewinnen.

Schießt man zwei solcher Blitze schnell hintereinander auf eine Probe, so erhält man sogar Informationen über die strukturellen Veränderungen während einer Reaktion: Ein erster Puls löst die Reaktion aus, mit einem zweiten Laserstrahl wird vermessen, wie die Struktur sich durch die Reaktion verändert. Doch die Technologie hat einen Haken: Der zeitliche Verlauf der Intensität und die Länge der Röntgenblitze variieren von Blitz zu Blitz. Das Bild bleibt unscharf.


 
Illustration der ringförmig wie auf dem Zifferblatt einer Uhr angeordneten 16 Detektoren.

Ein von Physikern der Technischen Universität München (TUM) angeführtes internationales Team hat nun eine Lösung gefunden: Mit einem zirkular polarisierten Infrarotlaser und einem Ring aus 16 Detektoren können sie den zeitlichen Verlauf und die Energie jedes Pulses präzise messen. Damit werden die Ergebnisse der einzelnen Pulse vergleichbar.

Eine Stoppuhr mit Attosekunden-Genauigkeit

„Eine Attosekunde ist der Milliardste Teil einer Milliardstel Sekunde, oder anders ausgedrückt: Eine Attosekunde verhält sich zu einer Sekunde in etwa wie eine Sekunde zum gesamten Alter des Universums“, sagt Reinhard Kienberger, Professor für Laser- und Röntgenphysik an der TU München. „Doch die energetischen Änderungen in einem Molekül während einer Reaktion sind so unglaublich fein und schnell, dass wir nur mit solch extrem kurzen Pulsen etwas sehen.“

In seinem Experiment benutzte das Forschungsteam Röntgenblitze der Linac Coherent Light Source in Menlo Park (USA). In der Probenkammer schlagen sie aus Neon-Atomen Elektronen heraus. Treffen diese nun auf einen Infrarot-Lichtimpuls, so werden sie von dessen elektrischem Feld beschleunigt oder abgebremst, je nach dem welche Feldstärke der Lichtpuls gerade hat, wenn das Elektron erzeugt wird.

Die zirkulare Polarisierung des Infrarotpulses gibt dem Elektron nun zusätzlich noch eine Richtung. Mit einem Ring aus 16 Detektoren sind daher Energie und Dauer des ursprünglichen Röntgenpulses wie auf dem Zifferblatt einer Uhr mit Attosekundengenauigkeit bestimmbar.

Die Information sowohl über die Energieverteilung als auch über die zeitliche Pulsstruktur soll es künftig erlauben, ganz spezifisch einzelne Reaktionsstellen in komplizierteren Molekülen anzusprechen und deren Einfluss auf den Verlauf der Veränderungen während der Reaktion in Echtzeit zu verfolgen.

Weiterentwicklung von Freie-Elektronen-Lasern

„Diese Technik kann nun auch dazu verwendet werden, die Entwicklung der FELs selbst voranzutreiben“, sagt Wolfram Helml, Leiter des Forschungsteams. „Wir erhalten eine sofortige Rückmeldung über die Pulsstruktur während der FEL durchgestimmt wird. So können wir gezielt Röntgenblitze mit ganz bestimmter Dauer oder energetischen Eigenschaften erzeugen.“

Von besonderem Interesse ist die neue Technik auch für Forschungsarbeiten am neuen European X-ray Free-Electron Laser (Eu-XFEL) in Hamburg, da sie im Unterschied zu anderen Techniken, auch für Messungen mit der hohen Wiederholrate genutzt werden kann, die diese hochmoderne Anlage zur Verfügung stellt.

Auch im Rahmen des gerade im Aufbau befindlichen Centre for Advanced Laser Applications (CALA) in Garching bei München, wo mithilfe laserbasierter Röntgentechnik Methoden zur Früherkennung und Therapie chronischer Krankheiten entwickelt werden sollen, könnte diese Technologie eingesetzt werden.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung